On bifurcation points of a complex polynomial

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Bernstein Type Inequalities for Complex Polynomial

In this paper, we establish some Bernstein type inequalities for the complex polynomial. Our results constitute generalizations and refinements of some well-known polynomial inequalities.

متن کامل

The Density of Extreme Points in Complex Polynomial Approximation

Let K be a compact set in the complex plane having connected and regular complement, and let / be any function continuous on K and analytic in the interior of K. For the polynomials pn(¡) of respective degrees at most n of best uniform approximation to / on K, we investigate the density of the sets of extreme points And) :={zeK: \f{z) p*n{f)(z)\ = \\f Pn(¡)\\K} in the boundary of K.

متن کامل

Polynomial Points

We determine the infinite sequences (ak) of integers that can be generated by polynomials with integral coefficients, in the sense that for each finite initial segment of length n there is an integral polynomial fn(x) of degree < n such that ak = fn(k) for k = 0, 1, . . . , n − 1. Let P be the set of such sequences and Π the additive group of all infinite sequences of integers. Then P is a subg...

متن کامل

On the polar derivative of a polynomial

For a polynomial p(z) of degree n, having all zeros in |z|< k, k< 1, Dewan et al [K. K. Dewan, N. Singh and A. Mir, Extension of some polynomial inequalities to the polar derivative, J. Math. Anal. Appl. 352 (2009) 807-815] obtained inequality between the polar derivative of p(z) and maximum modulus of p(z). In this paper we improve and extend the above inequality. Our result generalizes certai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2002

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-02-06822-3